Вы здесь

Биопечать: первый тайм уже отыграли

Биопринтинг – печать человеческих органов живыми клетками - ещё воспринимается как научная фантастика, но учёные подходят к завершению первого этапа создания действующих органов. Биочернила – важнейший компонент  - уже реальность. Лаборатории, развивающие технологию печати живыми клетками, ищут свои способы решения проблемы. Но основным качеством любых биочернил является одно – они должны быть на основе живых клеток.

Самым первым и при этом самым простым решением было создание водных физиологических растворов с добавлением солей, необходимых для поддержания жизни. Однако этот метод не оправдал себя: клетки в таких растворах быстро агрегировали и выпадали в осадок, делая процесс печати невозможным. Тогда для борьбы с агрегацией и седиментацией клеток в состав биочернил стали добавлять растворы биополимеров низкой вязкости. И хотя это улучшило жизнеспособность клеток, подобные чернила долго не хранились и приводили к поломкам печатных головок. 

Эти факторы постарались учесть биоинженеры из Университета Вуллонгонга (Австралия). Они добавили к биополимеру геллану (геллановая камедь, Е418) два поверхностно активных вещества — Novec FC4430 и Poloxamer 188, необходимые для снижения поверхностного натяжения клеток. Такой состав позволил оптимизировать качество струйной печати, а также защитить живые клетки от механических повреждений. В новом растворе, по словам учёных, клетки не осаждаются и не агрегируют, поскольку биополимер создаёт структурированную сеть микрогелевых частиц, которые и удерживают суспендированные в геле клетки. В результате появляется возможность использовать одну и ту же печатающую головку длительное время. В качестве примера на поверхности коллагенового гидрогеля были напечатаны несколько «картинок». Гель послужил сохраняющей подкладкой для живых клеток, защищая их от дегидротации. 

Российская компания «3Д Биопринтинг Солюшенс», создавая свои собственные биочернила, освоила технологию массового производства тканевых сфероидов с использованием неадгезивных силиконовых микромолдов и гидрогеля. Для этого применяются специальные устройства для формирования микроячеек в агарозе, куда можно помещать клеточную суспензию. Данная технология обеспечивает более высокую степень контроля над целлюляризацией и более воспроизводимые результаты. Эта технология оказалась максимально приближенной к среде обитания, комфортной для клеток. Тканевые сфероиды или биочернила - это ключевой элемент технологии трехмерной биопечати. Они являются строительными блоками, используемыми для создания трехмерных тканей и органов. Тканевые сфероиды имеют много замечательных характеристик, но наиболее важным свойством тканевых сфероидов необходимым для технологии печати органов есть их внутренняя способность само-собираться или само-организовываться в процессе сращивания ткани, управляемая силой поверхностного натяжения то есть их способность запускать процесс спонтанного сращивания тканей. Феномен слияния тканевых сфероидов лежит в основе роботической биофабрикации трехмерных тканевых и органных структур с помощью трехмерного биопринтера, который разрабатывается компанией. Это важный этап в развитии компании и крупный шаг на пути к созданию ее первого коммерческого продукта. 

3D-биопринтингом занимаются и в Институте межфазной инженерии и биотехнологий Фраунгофера (Fraunhofer Institute for Interfacial Engineering and Biotechnology, IGB) в Штутгарте. Ученые из IGB пошли другим путём в разработке биочернил, пригодных для использования в биопечати. Их биочернила основаны на хорошо известном биологическом материале – желатине. Желатин получают из коллагена – основного компонента соединительной ткани. Чтобы адаптировать биологические молекулы для печати, исследователи модифицировали гелеобразующие свойства желатина. В отличие от не модифицированного желатина, быстро образующего гидрогель, биочернила в процессе печати остаются жидкими. Жидкость превращается в гидрогель только после облучения ультрафиолетовым светом, сшивающим молекулы коллагена. 

Полимеры из модифицированного желатина – как и природные ткани – содержат огромное количество воды, но остаются стабильными в водной среде и при нагревании до физиологических 37°С. Химическую модификацию биологических молекул можно контролировать, с тем, чтобы получать гели с различными характеристиками прочности и набухания. Это позволяет имитировать свойства разных естественных тканей – от твердого хряща до мягкого жира. 

Учёные из Пенсильвании вообще решили пойти другим путём. Они используют в качестве биочернил не живые клетки, а различные препараты, воздействующие на скорость роста и формирования клеток. Традиционно стволовые клетки культивируются и дифференцируются в клетки различных типов в отдельных лабораторных сосудах (или, реже, в одном, но поочередно). Однако в организме все происходит по-другому: тело представляет собой единый «биореактор», в котором одновременно формируются клетки различных типов. Метод, разработанный учеными университета Карнеги-Меллона (г. Питтсбург, штат Пенсильвания), чем то похож на эту модель развития. Разработанный исследователями прибор представляет своего рода струйный принтер, заправляемый в качестве «биочернил» различными факторами роста. С его помощью на формы, покрытые экстрацеллюлярным матриксом (например, фибрином), факторы роста можно наносить в любой концентрации и согласно любым пространственным схемам, необходимым для воссоздания той или иной структуры организма. 

Исследователи из Университета Эдинбурга также решили не печатать ткани, а сосредоточится на печати клеток. Они создали принтер клеток, который создаёт живые эмбриональные стволовые клетки. Принтер способен не только печатать клетки одинакового размера, но и поддерживать клетки живыми, сохраняя их способность к развитию на разных этапах. Их цель – создание клеток непосредственно в теле человека. 

Объединение AMTecH (Advanced Manufacturing Technology), сформированное на базе инженерного центра университета штата Айова также создали биочернила, которые представляют многокомпонентную смесь. Помимо самой клеточной культуры они содержат гидрогель в качестве опорного материала и питательную среду. Все компоненты при печати необходимо вовремя вводить в заданную область в точных пропорциях, поэтому возникают сложности с дизайном, над которым сейчас в компании и работают. 

Это далеко не весь список путей, по которым движутся лаборатории, стремящиеся к созданию живых органов. У каждого учёного – свой рецепт. И какой из них окажется самым «вкусным» для развивающегося рынка по точности, затратности и воспроизводимости станет ясно уже очень скоро. Специалисты из того же объединения AMTecH утверждают, что до первого живого органа осталось всего лишь пять лет. А это значит, что мы увидим всё это своими глазами.

Источник
 

Поделиться